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INTRODUCTION

Solution of the wave equation using techniques such as finite difference or finite

element methods can model elastic wave propagation in solids. This requires mapping the

physical geometry into a computational domain whose size is governed by the size of the

physical domain of interest and by the required resolution. This computational domain, in

turn, dictates the computer memory requirements as well as the calculation time. Quite

often, the physical region of interest is only a part of the whole physical body, and does not

necessarily include all the physical boundaries. Reduction of the calculation domain

requires positioning an artificial boundary or region where a physical boundary does not

exist. It is important however that such a boundary, or region, will not affect the internal

domain, i.e., it should not cause reflections that propagate back into the material. This paper

concentrates on the issue of constructing such a boundary region.

THE GOVERNING EQUATIONS

The equations of motion for isotropic media, in terms of the displacement u are [ 1]:

(k + _1) ui.i, + p.tfi,# = pii, (I)
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or, in vector notation [1]:

3 2U
()_ + B) V div(_U) + lay 2_U = p:_- (2)

tit"

where _, and B are Lam6 constants, and p is the mass density. Examining solution
components of the form

_U = _Ae'(-K -x _'_) (3)

where _U = (ul, u2, u3) r, A_ = (a,, a2, a3) T, _K = (k,, k2, k3) 7', and _X = (x,, x2, x3) r, Eq.

(2) results in:

- (_,+ $.t) (_A. K) *K- _tI_K]2_A= -p¢-02_A (4)

where I_K12= _K. K, and in a matrix form:

(_,+l.t) klk 2 -po)2+lal_KI2+ (),.+}.t)k_ (k+t't) k2k3 jfJA2=
(_+l'l)klk3 (_+P')k2k3 -P (02+IJ'IK[2+- (_+P')k23 A3

o (5)

Non-trivial solutions exist when the determinant vanishes, i.e., when

2 2

[ (_.+21J.)lKl2-pf.02] [_/Kl2-pm ] = 0 (6)

This can be written as:

22 2 _f_+ 2B[c_t_K]2-¢o 2] [GI_K] -co 2] = 0 where c, = _/ p , c_ = (7)

In the bulk, real _K values yield the two types of waves that possess the dispersion relations

m2 c2el_K]2 and 02 2 2= = c,l_K] (8)

which determine the phase velocity of the propagating waves given by Eq. (3). Given to, the

set of solutions corresponds to two spheres in _K space given by the above Eq. (7). The

propagation of energy is given by the group velocity:

K K

Vp VK¢-O= cr_ and V = V_xm = (9)= _ _ g._ C_I_

thus waves can propagate in all directions with speeds Cg and Cgc Fig. 1 shows the
, . , P

intersection of the group velocity vector plane with the k_k 2 plane. For a given direction, the
wave propagates with group velocity described by the vector from the zero origin to the

surface of the plotted sphere. The vector length is Cgp for the p-waves, and cg, for the s-
waves. In general, when a wave reaches a boundary, other waves characterized by Eq. (7)

too can be generated. As shown above, the media can support propagation of waves in any
direction, thus the waves can propagate back into the interior. If this interface is an artificial

boundary only, such waves are not acceptable. The purpose of a non-reflecting boundary

region is to disallow such waves.
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Fig. 1
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Group velocity vector in an isotropic solid as a function of K.

EXISTING METHODS

The treatment of artificial boundary can be divided into several main approaches:

Viscous Boundary_ Conditions -- Viscous boundary conditions have been proposed by
Lysmer and Kuhlemeyer [2]. They have the form:

_Ul _U 2

apcpfft = _11 and bpc_fftt = Gi2 (10)

where p is the mass density, c, is the P-wave speed, c, is the S-wave speed, and u_, u2 are
the normal and the tangential directions to the boundary. The quantities a and b are

dimensionless parameters, fitted to minimize the reflected energy for an incident wave at a

particular chosen angle of incidence. This boundary condition was found to yield large
spurious reflections at sharp angle of incidence. Some improvement of this boundary
condition has been done [3]. This method is used in some NDE applications (see for
example [8]).

Non-reflecting Boundary Conditions -- Absorbing boundary conditions for elastic
waves have been developed by Clayton and Engquist [4], analyzed by Engquist and Majda

[5], and improved by Higdon [7] who used the general absorbing boundary condition:

(_ : O i -- 1,2,3riot 3x "'" OI OX
(11)

where the number of terms is controlled by m. The appropriate choice of the [3terms leads
to absorption of different P-waves or S-waves at different angles of incident. The more

terms are taken in Eq. (11), the less reflections are generated. Emerman and Stephen [6]

showed that the original boundary conditions [4] are unstable for c/cp < 0.46.

Attenuating Buffer Zone -- Cerjan et al. [9], Sochacki et al. [10], and Hanson &
Petschek [ 11] presented buffer-domain techniques where the amplitudes of the

displacement are gradually reduced when approaching the boundary.

Non-local boundary conditions -- have been studied by several authors and are

recommended by Givoli [ 12]. These methods, however, are hard to implement and in
general, low in computational efficiency.
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NON-REFLECTING BUFFER

The method presented in this paper uses a buffer zone as in the attenuating buffer-
zone method. However, instead of attenuating the waves, we modify the equations of

motion in the buffer in such a way that their direction of propagation is biased toward the

outer boundary until no backward propagation is possible.

The construction of the modified equations can be explained in terms of the dispersion
relation. Consider a modified form of each of the factors of the determinant in Eq. (7)

[c_l_K1_'- (c0-Y0-K) 2] = 0 (12)

where _Vo = (vl, v2, v3) r. It yields the dispersion relation:

o_ = cl_K1+Yo' _K (13)

and the group velocity:

K
VKO_ = cl__ +Y0 (14)

Thus, the group velocity of the modified system can be controlled by an appropriate choice

of _V0. Since K/t_ is a unit vector, any _Vo that satisfies

V o • m > max(c) (15)

_mbeing a direction vector, does not allow propagation of waves that have a component in
the direction -_m [Fig. 2], and the group velocity cp in the material is an appropriate choice

for max(c).

The change in the elasticity equation of motion that produces the above effect on

velocity of the waves is given by:

2

(X +lx) V div(-U)+! aV2 U- = P (_ + Yo" V-) U_ (16)

When V o is zero, Eq. (16) reverts to the physical Eq. (2). We see that we can use

_Vo = 0 in the physical domain of interest, and a non zero value of _V0 satisfying Eq. (15), at
the outer boundary of the buffer region, where m = _n,n being the outward normal at that

k2

-m

kl

\

Fig. 2 Group velocity in the non-reflecting buffer.
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boundary. As a discontinuity in _V0 in the buffer zone will produce reflection by itself, Vo
must change smoothly from zero to its maximum value.

The analytical study of the change in _Vo and the amount of reflected energy as a

function of V 0 will be presented elsewhere. Certainly, the larger the buffer domain is, the
less reflection it will produce by an appropriate smoothly varying V 0.

SURFACE WAVES

In order to analyze the behavior of the surface waves in the buffer zone, we consider

waves of the form of Eq. (3) with _K = (k_, O, ik3), where kj, k3 are real, i.e.,

e i_°'eik'Xe-k'_ (17)

which are components of surface waves in the ._x_ direction, propagating on the z = 0
surface. For simplicity of the analysis we consider the outward normal to the nonreflecting

boundary zone to ben = (-l, O, O) , and V o = (-v, O, O) , i.e., _V0._K =-vk_.
Substituting these K and V 0 into Eq. (12), the resulting dispersion relation is

c2(k_-k_)-(o+vk,) 2 = 0 for c = cp,G (18)

Rewriting it as a quadratic equation in k_/co we get

2k I k,]k,)_2v__ 1+c2( .)2(c 2- v 2) (_ _ = 0

The product and the sum of the two roots of Eq. (19) kl')/a_ and (k12)/o) are:

(19)

2

kll) k12, 1+ cZ(_) kl" k{ 2' -2v

2 2 _ ¢dl) 0,_ 2 2
03 (1) V --C V --C

(20)

The requirement v > c from Eq. (15) implies that the real parts of the two roots are negative

and the waves propagate in the direction of _n,i.e., waves do not propagate backwards. It can
be shown that V 0 • _ must be non-negative at any boundary point, including any physical

boundary, otherwise, surface waves will be amplified in an uncontrolled way.

DISCRETIZATION

The construction of the buffer region equations as described above is in the
continuous level, independent of the discretization. For the numerical solution, a staggered

grid discretization in space was used [13]. A central second order scheme was used for all
the spatial terms of Eq. (16) except for the V o . V term. This term, which exists only in the

buffer zone, requires careful discretization. Considering the resulting dispersion relation for
the discrete system, we can see that a central differencing, for example, is inappropriate.

This can be seen by analyzing the dispersion relation. The discrete version of Eq. (3) is:

_U = _Aei(9 s/_..... ) (21)
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h being the mesh size. The dispersion relation, using a central scheme for all the terms,

including V0 • _V, derived in an analogous way to the calculation of Eq. (6), is

203 (or._v_sinOl_v2sinOf..v_sin03)21I4 (_. + 2g) (sin2_ + sin2_ + sin _-)-0

2

f- 20t 202 203 (to-vtsinOl-v2sinO2-v3sin03) 2] 0• L41.t (sin)- + sin _- + sin _-)-p =

(22)

It can be seen that for real to, if (01, 02, 03) is a solution, then (_+01, :L-0v +_03) is also a
solution. A change of sign in 0 i corresponds to a wave propagating in the i direction

opposite to the original wave. Thus, although the modified differential equation produces no
reflections, some of its discretizations might do so.

This is resolved by using an upwind discretization for V. V. It changes the

(-vt sin0_-v2 sin02-v3 sin03) term in Eq. (22) to

-vt ( 1 - e40') -v2 ( 1 - e -ie') -v3 ( 1 - e -i°') (23)

for v, > 0, v2 > 0, v 3> 0. It can be shown that the resulting dispersion relation does not allow

reflected waves when _V0 • n is larger than the maximal group velocity in the discrete system,

which for the above discretization is cg.

APPLICATION

The method was tested on a body with rectangular geometry. An artificial buffer

domain that was 32 grid points wide was positioned at the left surface, while the other
surfaces where physical ones, with stress-free boundary conditions. The result in Fig. 3
shows the horizontal displacement for a body under plane strain conditions due to a

localized dynamic force acting on the top surface. We can see the bulk p and s waves, as
well as the surface waves propagate as a function of time. Mode conversion at the boundary

is clearly visible. As the waves enter the buffer region, they speed up and attenuate due to
the upwind discretization for the added V. V term. No reflections occur at that artificial

boundary, while at the same time, the waves that reach the physical boundary on the right
are reflected as expected. Note that even a comer between an artificial boundary and a

physical one does not produced reflected waves.

CONCLUSIONS

The proposed method for constructing a non-reflective region to serve as an artificial

boundary is easy to apply, and depends only on the maximum group velocity of the
discretized system. It is very effective for practically eliminating reflection of p-waves and

s-waves as well as surface waves. The method is independent of the discretization and can
be used with high order discretization as well.
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Fig. 3 Horizontal displacement due to a localized dynamic load acting on the top

surface. The left boundary includes a non-reflective region. The other boundaries are

stress-free.
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